In the active tectonic setting of Aotearoa/New Zealand, large earthquakes are a relatively frequent occurrence and pose particular threats to infrastructure and society in Westland, on the west coast of South Island. In order to better define the medium- and long-term (annual to decadal) implications of these threats, existing dendrochronological data were supplemented by several hundred tree-ring analyses from 14 hitherto unstudied living tree stands in five catchments; these were combined to compile a regional picture of the location, extent, and timing of major prehistoric reforestation episodes on the floodplains of the area. These episodes correspond well with known dates of large earthquakes in the area (ca. 1400, ca. 1620, 1717 and 1826 AD), and their extents are thus interpreted to reflect the sediment deliveries resulting from coseismic landsliding into mountain valleys, and their reworking by rivers to generate widespread avulsion, aggradation, floodplain inundation and forest death. This regional aggradation picture can underpin anticipation of, and planning for, the medium- to long-term societal impacts of future major West Coast earthquakes. The source location of the next major earthquake in the region is unknown, so any of the Westland floodplains could be affected by extensive, up to metre-scale river aggradation, together with avulsion and flooding, in its aftermath, and these could continue for decades. Re-establishment and maintenance of a functioning economy under these conditions will be challenging because roads, settlements and agriculture are mostly located on the floodplains. The differences in floodplain vegetation between prehistoric and future episodes will affect the rapidity and distribution of aggradation; response and recovery planning will need to consider this, together with the impacts of climate changes on river flows.
Read full abstract