Aerosol distribution over the Arabian Sea and the Indian subcontinent during the northern hemispheric summer is dominated by mineral dust transport from the West Asian desert regions. The radiative impact of these dust plumes is expected to have a prominent role in regulating the Asian Summer Monsoon circulation. While satellite observations have provided information in the spatial distribution of aerosols over the oceanic regions during the season, their utility over the land is rather limited. This study examines the transport of mineral dust over the West Asian desert, the Indian subcontinent and the surrounding oceanic regions during the summer monsoon season with the help of a regional scale model, WRF-Chem. Geographical locations of prominent dust sources, altitude ranges of mineral dust transport and their inter-annual variations are examined in detail. Multi-year model simulations were carried out during 2007 to 2012 with a model integration from 15 May to 31 August of each year. Six-year seasonal mean (June to August) vertically integrated dust amount from 1000 to 300 hPa level shows prominent dust loading over the eastern parts of Arabian desert and the northwestern part of India which are identified as two major sources of dust production. Large latitudinal gradient in dust amount is observed over the Arabian Sea with the largest dust concentration over the northwestern part and is primarily caused by the prevailing northwesterly wind at 925 hPa level from the Arabian desert. The model simulations clearly show that most of the dust distributed over the Indo-Gangetic plane originates from the Rajasthan desert located in the northwestern part of India, whereas dust observed over the central and south peninsular India and over the Arabian Sea are mainly transported from the Arabian desert. Abnormal dust loading is observed over the north Arabian Sea during June 2008. This has been produced as a result of the low pressure system (associated with the onset of summer monsoon) which entered in to the Arabian land mass, resulting strong wind and large dust storms over the region; the prevailing northwesterly wind transported these dust in to the Arabian Sea.