Within dependent type theory, we provide a topological counterpart of well-founded trees (for short, W-types) by using a proof-relevant version of the notion of inductively generated suplattices introduced in the context of formal topology under the name of inductively generated basic covers. In more detail, we show, firstly, that in Homotopy Type Theory, W-types and proof relevant inductively generated basic covers are propositionally mutually encodable. Secondly, we prove they are definitionally mutually encodable in the Agda implementation of intensional Martin-Loef's type theory. Finally, we reframe the equivalence in the Minimalist Foundation framework by introducing well-founded predicates as the logical counterpart for predicates of dependent W-types. All the results have been checked in the Agda proof-assistant.Comment: To be published in the post-proceedings of the 39th Conference on Mathematical Foundations of Programming Semantics
Read full abstract