A critical consideration in the optimal design of magnetically shielded rooms is the manner in which an external magnetic field, which should be shielded, is imposed on a target area. In this paper, we examined the possibility of applying the <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> method (the method of which the magnetic field <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> in the analyzed region is given) to the shielding problem with a measurement-based magnetic field, which includes an irrotational field component as noise, and, therefore, is inconsistent with Maxwell's equations. We show that the <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> method has a well-defined physical meaning for such an irrotational field component. Furthermore, we explain why the convergence and the accuracy of the <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> method are better than those of the A method.