To study volatile combustion processes of single coal particles non-intrusive simultaneous multi-parameter measurements were performed. The experiment was carried out in a fully premixed flat flame burner with well-defined boundary conditions. For flame visualization high-speed luminescence imaging was combined with high-resolution high-speed OH-PLIF. To address particle size and shape a stereoscopic high-resolution backlight-illumination system was set up. Due to simultaneous recording of individual particle events the volatile combustion duration related to particle size, shape and velocity was measured. A comparison of luminescence imaging and OH-PLIF for flame visualization was investigated to define their application areas in coal combustion. The stereoscopic backlight-illumination setup was benchmarked to a well characterized bituminous coal. With a pixel resolution of ∼2.5 µm fine particle contours were resolved. The particle diameter and eccentricity were evaluated by an ellipse approximation. The experimental setup can be used to investigate different coal ranks and biomass in N2/O2 and CO2/O2 atmospheres in future.
Read full abstract