Let ℒ=−Δ+V be a Schrödinger operator on ℝd, d≥3, where Δ is the Laplacian operator on ℝd, and the nonnegative potential V belongs to the reverse Hölder class RHs with s≥d/2. For given 0<α<d, the fractional integrals associated with the Schrödinger operator ℒ is defined by ℐα=ℒ−α/2. Suppose that b is a locally integrable function on ℝd and the commutator generated by b and ℐα is defined by b.ℐαfx=bx⋅ℐαfx−ℐαbfx. In this paper, we first introduce some kinds of weighted Morrey spaces related to certain nonnegative potentials belonging to the reverse Hölder class RHs with s≥d/2. Then, we will establish the boundedness properties of the fractional integrals ℐα on these new spaces. Furthermore, weighted strong-type estimate for the corresponding commutator b,ℐα in the framework of Morrey space is also obtained. The classes of weights, the classes of symbol functions, as well as weighted Morrey spaces discussed in this paper are larger than Ap,q, BMOℝd, and Lp,κμ,ν corresponding to the classical case (that is V≡0).