This paper presents the study results of formation features of composite hydrogel/polyamide membranes obtained by modification of hydrogel films based on 2-hydroxyethylmethacrylate (HEMA) and polyvinylpyrrolidone (PVP) copolymers. The formation process of composite two-layer membranes was carried out in two stages: obtaining hydrogel membrane substrates followed by their modification with an ultra-thin layer based on a mixture of polyamide (PA) with PVP. The main task of the work was to investigate the possibility of forming a modifying PA/PVP coating on the surface of hydrogel films and to obtain composite hydrogel membranes with the required strength and osmotic permeability based on them. For the formation of composite two-layer membranes, PVP with MM = 12 × 103 g/mol and MM = 360 × 103 g/mol were used. Additional use of PVP in the modifying solution contributes to the process of its penetration into the hydrogel substrate. Together with the formation of a reinforcing layer, this ensures the obtainment of hydrogel films of increased strength, with the possibility of directional regulation of their diffusion permeability. It was found that the main factors affecting the nature of the interaction between the layers of the obtained composite films, as well as their physico-mechanical and sorption–diffusion properties, are the HEMA:PVP ratio in the original polymer–monomer composition (PMC), the formulation of the reinforcing layer, the duration of the modification process and the molecular weight of PVP in PMC and in the modifying solution. The strength and water content of two-layer composite hydrogel/polyamide membranes, as well as their salt and water permeability coefficients, are the highest in the case of using high-molecular weight PVP (MMPVP = 360 × 103 g/mol) and low-molecular weight (MMPVP = 12 × 103 g/mol) during the synthesis of the hydrogel substrate to obtain a PA-6/PVP solution for forming a reinforcing layer.