Tungsten (W) is an emerging contaminant that poses potential risks to both the environment and human health. While dissolved organic matter (DOM) can significantly influence the W's environmental behavior in natural aquifers, the mechanisms by which DOM's molecular structure and functional group diversity impact W binding and migration remain unclear. Using molecular weight-fractionated soil and sediment DOM (<1 kDa, 1–100 kDa, and 100 kDa–0.45 μm), this study systematically investigated the relationship between DOM molecular characteristics and tungstate (WO42−) binding properties using multiple spectroscopic methods, including FTIR, fluorescence spectroscopy and XPS. The migration behavior of WO42− in porous media was also investigated through quartz sand column experiments. Results revealed that approximately 75 % of W was controlled by DOM, with over 50 % binding to low molecular weight DOM (<1 kDa). Tungsten bound to medium-high molecular weight DOM (1–100 kDa, >100 kDa) showed a greater propensity for retention, with the >100 kDa fractions demonstrating stronger selective binding to W, exhibiting distribution coefficients (Kmd) of 6.11 L/g and 10.69 L/g, respectively. Further analysis indicated that W primarily binds with aromatic rings, phenolic hydroxyls, polysaccharides, and carboxyl groups in DOM, potentially affecting DOM structural stability and consequently influencing W migration characteristics. Free W migration in quartz sand was primarily controlled by Langmuir monolayer adsorption, leading to local enrichment (Da = 6.83, Rd = 86.98). When bound to DOM, W's migration ability significantly increased (Rd = 8–10), with adsorption shifting to a Freundlich multilayer model, primarily controlled by convective transport (Npe = 27–62> > 1.96), while adsorption effects weakened (Da ≈ 1). This study, for the first time, systematically reveals the regulatory mechanisms of DOM molecular characteristics on tungsten's environmental behavior. It offers crucial parameter support for constructing tungsten migration models and provides important guidance for tungsten pollution risk assessment and remediation strategies.
Read full abstract