Abstract
Significant spatial variability of groundwater arsenic (As) concentrations in South/Southeast Asia is closely associated with sedimentogenesis and biogeochemical cycling processes. However, the role of fine-scale differences in biogeochemical processes under similar sedimentological environments in controlling the spatial heterogeneity of groundwater As concentrations is poorly understood. Within the central Yangtze Basin, dissolved organic matter (DOM) and microbial functional communities in the groundwater and solid-phase As-Fe speciation in Jianghan Plain (JHP) and Jiangbei Plain (JBP) were compared to reveal mechanisms related to the spatial heterogeneity of groundwater As concentration. The optical signatures of DOM showed that low molecular terrestrial fulvic-like with highly humified was predominant in the groundwater of JHP, while terrestrial humic-like and microbial humic-like with high molecular weight were predominant in the groundwater of JBP. The inorganic carbon isotope, microbial functional communities, and solid-phase As-Fe speciation suggest that the primary process controlling As accumulation in JHP groundwater system is the degradation of highly humified OM by methanogens, which drive the reductive dissolution of amorphous iron oxides. While in JBP groundwater systems, anaerobic methane-oxidizing microorganisms (AOM) coupled with fermentative bacteria, iron reduction bacteria (IRB), and sulfate reduction bacteria (SRB) utilize low molecular weight DOM degradation to drive biotic/abiotic reduction of Fe oxides, further facilitating the formation of carbonate associated Fe and crystalline Fe oxides, resulting in As release into groundwater. Different biogeochemical cycling processes determine the evolution of As-enriched aquifer systems, and the coupling of multiple processes involving organic matter transformation‑iron cycling‑sulfur cycling-methane cycling leads to heterogeneity in the spatial distribution of As concentrations in groundwater. These findings provide new perspectives to decipher the spatial variability of As concentrations in groundwater.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have