Ischemic postconditioning has been found to decrease brain infarct area and spinal cord ischemic injury. In this study, we tested the hypothesis that ischemic postconditioning reduces global cerebral ischemia/reperfusion-induced structural and functional injury in rats. Ten-minute global ischemia was induced by 4-vessel occlusion in male Sprague-Dawley rats. The animals underwent postconditioning consisting of 3 cycles of 15-second/15-second (Post-15/15), 30-second/30-second (Post-30/30), or 60-second/15-second (Post-60/15) reperfusion/reocclusion or 15-second/15-second reperfusion/reocclusion applied after a 45-second reperfusion (Post-45-15/15). Ten minutes of ischemia and 7 days of reperfusion destroyed 85.8% of CA1 hippocampal neurons and 64.1% of parietal cortical neurons. Three cycles of Post-15/15, Post-30/30, and Post-45-15/15 reperfusion/reocclusion markedly reduced neuronal loss after 7 days or 3 weeks of reperfusion and diminished the deficiency in spatial learning and memory. After reperfusion, a period of hyperperfusion followed by hypoperfusion was observed, both of which were blocked by postconditioning. The cytosolic level of cytochrome c increased significantly after 48 hours of reperfusion, and this was inhibited by Post-15/15, Post-30/30, and Post-45-15/15. However, 3 cycles of 60-second/15-second reperfusion/reocclusion failed to protect against neuronal damage, behavioral deficit, or cytochrome c translocation. Our data provide the first evidence that an appropriate ischemic postconditioning strategy has neuroprotective effects against global cerebral ischemia/reperfusion injury and a consequent behavioral deficit and that these protective effects are associated with its ability to improve disturbed cerebral blood flow and prevent cytochrome c translocation.
Read full abstract