A model for the combined long-term cycles of carbon and sulfur has been constructed which combines all the factors modifying weathering and degassing of the GEOCARB III model [Berner R.A., Kothavala Z., 2001. GEOCARB III: a revised model of atmospheric CO 2 over Phanerozoic time. Am. J. Sci. 301, 182–204] for CO 2 with rapid recycling and oxygen dependent carbon and sulfur isotope fractionation of an isotope mass balance model for O 2 [Berner R.A., 2001. Modeling atmospheric O 2 over Phanerozoic time. Geochim. Cosmochim. Acta 65, 685–694]. New isotopic data for both carbon and sulfur are used and new feedbacks are created by combining the models. Sensitivity analysis is done by determining (1) the effect on weathering rates of using rapid recycling (rapid recycling treats carbon and sulfur weathering in terms of young rapidly weathering rocks and older more slowly weathering rocks); (2) the effect on O 2 of using different initial starting conditions; (3) the effect on O 2 of using different data for carbon isotope fractionation during photosynthesis and alternative values of oceanic δ 13C for the past 200 million years; (4) the effect on sulfur isotope fractionation and on O 2 of varying the size of O 2 feedback during sedimentary pyrite formation; (5) the effect on O 2 of varying the dependence of organic matter and pyrite weathering on tectonic uplift plus erosion, and the degree of exposure of coastal lands by sea level change; (6) the effect on CO 2 of adding the variability of volcanic rock weathering over time [Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci. 306 (in press)]. Results show a similar trend of atmospheric CO 2 over the Phanerozoic to the results of GEOCARB III, but with some differences during the early Paleozoic and, for variable volcanic rock weathering, lower CO 2 values during the Mesozoic. Atmospheric oxygen shows a major broad late Paleozoic peak with a maximum value of about 30% O 2 in the Permian, a secondary less-broad peak centered near the Silurian/Devonian boundary, variation between 15% and 20% O 2 during the Cambrian and Ordovician, a very sharp drop from 30% to 15% O 2 at the Permo-Triassic boundary, and a more-or less continuous rise in O 2 from the late Triassic to the present.
Read full abstract