The northward typhoon configuration along the southeast coast of China (TCN-SEC) is one of the key circulation patterns influencing the coastal cities in southeast China (CCSE). Here, we analyzed the air quality in CCSE during the high-incidence typhoon period from 2019 to 2021. Multi-source measurements were carried out to explore the impact of super typhoon 2114 ‘Chanthu’ on the air quality in CCSE. The results showed that the TCN-SEC and its surrounding weather situation had a favorable impact on the increase in pollutant concentration in CCSE, especially on the increase in O3 concentration. From 13 September to 17 September 2021, affected by the cyclonic shear in the south of super typhoon 2114 ‘Chanthu,’ the strong wind near the ground, stable relative humidity, strong precipitation, and the significantly reduced wind speed had a substantial effect on PM10, PM2.5, SO2, and NO2 concentrations. Calm and light air near the ground, weak precipitation, high daily maximum temperatures, and minimum relative humidity may provide favorable meteorological conditions for the accumulation of O3 precursors and photochemical reactions during the day, resulting in the daily peak values of O3 exceeding 160 μg/m3. The evolution of wind, relative humidity, and boundary layer height could play an important role in the variations in PM10 and PM2.5 concentrations by influencing pollutant accumulation or diffusion. It was suggested that the atmospheric structure of horizontal stability and vertical mixing below 1500 m could play a significant role in the accumulation and vertical distribution of ozone. The results highlight the important role of typhoons in the regional environment and provide a scientific basis for further application of multi-source observation data, as well as air pollution control.
Read full abstract