The current paper evaluates the weather research and forecasting (WRF) model sensitivity to five different combinations of cumulus, microphysics, radiation, and planetary boundary layer (PBL) schemes over Loess Plateau for the period 2015, in terms of 2 m temperature and precipitation. The WRF configuration consists of a 10 km resolution domain nested in a coarser domain driven by European Center for Medium-Range Weather Forecasts Reanalysis (ERA-Interim) data. The model simulated 2 m temperature and precipitation have been evaluated at daily and monthly scales with gridded observational dataset. The analysis shows that all experiments reproduce well the daily 2 m temperature, with overestimation particularly in the low-temperature range. Precipitation is less well simulated, with underestimation in all range, especially for intense rainfall. Comparing with ERA-Interim, WRF shows no clear benefit in simulating daily 2 m temperature while prominent improvement in simulating daily precipitation. WRF simulations capture the annual cycle of monthly 2 m temperature and precipitation with a warm bias and wet bias for most experiments in summer. Some reasonable configurations are identified. The “best” configuration depends on the criteria.
Read full abstract