High Entropy Alloys (HEAs) are currently a subject of significant research interest in the fields of materials science and engineering. They are rapidly evolving due to their exceptional properties, and there is considerable focus on expanding their application potential by developing HEA coatings on various substrate materials. This area of study holds promise for advancing technology and innovation in diverse industries. In this study, a novel equiatomic AlBeSiTiV Light Weight HEA was synthesized via mechanical alloying and was sprayed on the substrate SS316 by the thermal spray process. The microstructural characterization revealed that synthesized HEA had a major FCC phase and the average coating thickness was observed to be 150 μm. The average microhardness was measured to be 975 ± 13 HV for the coating which was five times than the substrate. The coated samples' wear resistance was found out using a pin-on-disc apparatus by varying the wear process parameters and Taguchi's L27 Orthogonal Array was used to interpret the parametric influence on wear rate. ANOVA and regression analysis revealed applied load to be the most significant factor followed by distance and velocity. The major wear mechanisms observed were adhesion abrasion and oxidation, and the formation of tribolayer was observed at higher velocity and distance.