We investigate the role of clustering on the critical behavior of the contact process (CP) on small-world networks using the Watts-Strogatz (WS) network model with an edge rewiring probability p. The critical point is well predicted by a homogeneous cluster-approximation for the limit of vanishing clustering (p → 1). The critical exponents and dimensionless moment ratios of the CP are in agreement with those predicted by the mean-field theory for any p > 0. This independence on the network clustering shows that the small-world property is a sufficient condition for the mean-field theory to correctly predict the universality of the model. Moreover, we compare the CP dynamics on WS networks with rewiring probability p = 1 and random regular networks and show that the weak heterogeneity of the WS network slightly changes the critical point but does not alter other critical quantities of the model.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access