Abstract
AbstractWe study transport in an idealized porous medium characterized by a spatially varying retardation factor, which models linear instantaneous chemical adsorption of a solute. Using a stochastic modelling approach, we study the impact of disorder correlation on the large-scale dispersion behaviour. We consider short, long-range and intermediate-range disorder correlations, and demonstrate that (truncated) power-law correlation causes anomalous dispersion, even in the presence of weak heterogeneity. We identify different preasymptotic and asymptotic regimes of anomalous dispersion that shed new light on the disorder and local-scale transport mechanisms leading to non-Fickian behaviour. The analytical results are complemented by numerical random walk particle tracking simulations, which are found to be in good agreement with the derived dispersion behaviour. We conclude the paper by deriving an effective transport equation for this system, which can be shown to be tied to the family of continuous-time random walk models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.