The Lindblad equation, which describes Markovian quantum dynamics under dissipation, is usually derived under the weak system-bath coupling assumption. Strong system-bath coupling often leads to non-Markov evolution. The singular-coupling limit is known as an exception: it yields a Lindblad equation with an arbitrary strength of dissipation. However, the singular-coupling limit requires high-temperature limit of the bath, and hence the system ends up in a trivial infinite-temperature state, which is not desirable in the context of quantum control. In this work, it is shown that we can derive a Markovian Lindblad equation for an arbitrary strength of the system-bath coupling by considering a new scaling limit that is called the singular-driving limit, which combines the singular-coupling limit and fast periodic driving. In contrast to the standard singular-coupling limit, an interplay between dissipation and periodic driving results in a nontrivial steady state.
Read full abstract