We present a theoretical study of the two-dimensional spiral antiferromagnet Ba2CuGe2O7 in the presence of an external magnetic field. We employ a suitable nonlinear sigma model to calculate the T=0 phase diagram and the associated low-energy spin dynamics for arbitrary canted fields, in general agreement with experiment. In particular, when the field is applied parallel to the c axis, a previously anticipated Dzyaloshinskii-type incommensurate-to-commensurate phase transition is actually mediated by an intermediate phase, in agreement with our earlier theoretical prediction confirmed by the recent observation of the so-called double-k structure. The sudden pi/2 rotations of the magnetic structures observed in experiment are accounted for by a weakly broken U(1) symmetry of our model. Finally, our analysis suggests a nonzero weak-ferromagnetic component in the underlying Dzyaloshinskii-Moriya anisotropy, which is important for quantitative agreement with experiment.
Read full abstract