Previous article Next article A General Discrete Limit Theorem in the Space of Analytic Functions for the Matsumoto Zeta-FunctionR. Kačinskaitė and A. LaurinčikasR. Kačinskaitė and A. Laurinčikashttps://doi.org/10.1137/S0040585X97983195PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstractA modified discrete limit theorem in the sense of the weak convergence of probability measures in the space of analytic functions for the Matsumoto zeta-function is proved.[1] Google Scholar[2] Google Scholar[3] R. Kačinskaitė, A discrete limit theorem for the Matsumoto zeta-function on the complex plane, Lithuanian Math. J., 40 (2000), pp. 364–378. LMJTD6 0363-1672 CrossrefGoogle Scholar[4] R. Kačinskaitė, A discrete limit theorem for the Matsumoto zeta-function in the space of analytic functions, Lithuanian Math. J., 41 (2001), pp. 344–350. LMJTD6 0363-1672 CrossrefGoogle Scholar[5] R. Kačinskaitė, A discrete limit distribution for the Matsumoto zeta-function in the space of meromorphic functions, Lithuanian Math. J., 42 (2002), pp. 37–53. LMJTD6 0363-1672 CrossrefGoogle Scholar[6] Google Scholar[7] A. Laurinčikas, Limit theorems for the Matsumoto zeta-function, J. Théorie Nombres Bordeaux, 8 (1996), pp. 143–158. CrossrefGoogle Scholar[8] A. Laurinčikas, On limit distribution of the Matsumoto zeta-function. II, Lithuanian Math. J., 36 (1996), pp. 371–387. LMJTD6 0363-1672 CrossrefGoogle Scholar[9] A. Laurinčikas, On limit distribution of the Matsumoto zeta-function, Acta Arith., 79 (1997), pp. 31–39. AARIA9 0065-1036 CrossrefGoogle Scholar[10] A. Laurinčikas, On the Matsumoto zeta-function, Acta Arith., 84 (1998), pp. 1–16. AARIA9 0065-1036 CrossrefGoogle Scholar[11] Google Scholar[12] K. Matsumoto, On the magnitude of asymptotic probability measures of Dedekind zeta-functions and other Euler products, Acta Arith., 60 (1991), pp. 125–147. AARIA9 0065-1036 CrossrefGoogle Scholar[13] Google Scholar[14] Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl., 1 (1956), pp. 157–214. TPRBAU 0040-585X LinkGoogle Scholar[15] Google ScholarKeywordslimit distributionMatsumoto zeta-functionrandom elementprobability measureweak convergence Previous article Next article FiguresRelatedReferencesCited ByDetails Volume 52, Issue 3| 2008Theory of Probability & Its Applications371-542 History Submitted:09 November 2004Published online:27 August 2008 InformationCopyright © 2008 Society for Industrial and Applied MathematicsKeywordslimit distributionMatsumoto zeta-functionrandom elementprobability measureweak convergencePDF Download Article & Publication DataArticle DOI:10.1137/S0040585X97983195Article page range:pp. 523-531ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics