AbstractWater is the primary carrier for herbicide applications. Spray water qualities such as pH, hardness, temperature, or turbidity can influence herbicide performance and may need to be amended for optimum weed control. Water quality factors can affect herbicide activity by reducing solubility, enhancing degradation in the spray tank, or forming herbicide-salt complexes with mineral cations, thereby reducing the absorption, translocation, and subsequent weed control. The available literature suggests that the effect of water quality varies with herbicide chemistry and weed species. The efficacy of weak-acid herbicides such as glyphosate, glufosinate, clethodim, sethoxydim, bentazon, and 2,4-D is improved with acidic water pH; however, the efficacy of sulfonylurea herbicides is negatively impacted. Hard-water antagonism is more prevalent with weak-acid herbicides, and trivalent cations are the most problematic. Spray solution temperature between 18 C and 44 C is optimum for some weak-acid herbicides; however, their efficacy can be reduced at relatively low (5 C) or high (56 C) water temperature. The effect of water turbidity is severe on cationic herbicides such as paraquat and diquat, and herbicides with low soil mobility such as glyphosate. Although adjuvants are recommended to overcome the negative effect of spray water hardness or pH, the response has been inconsistent with the herbicide chemistry and weed species. Moreover, information on the effect of spray water quality on various herbicide chemistries, weed species, and adjuvants is limited; therefore, it is difficult to develop guidelines for improving weed control efficacy. Further research is needed to determine the effect of spray water factors and develop specific recommendations for improving herbicide efficacy on problematic weed species.