High entropy alloys (HEAs) have emerged as a frontier in surface engineering, challenging the status quo of traditional alloy systems with their exceptional mechanical properties and corrosion resistance. This study investigates the CoCrFeMnNi0.8V HEA, both as a standalone alloy and in a composite with WC-Co, to evaluate their potential as innovative surface coatings. The CoCrFeMnNi0.8V alloy, enriched with vanadium, demonstrates a unique microstructure with enhanced hardness and wear resistance, while the addition of WC-Co particles contributes to improved toughness and durability. By employing High Velocity Oxy-Fuel (HVOF) thermal spray techniques, coatings are deposited onto steel substrates and subjected to rigorous microstructural characterization, wear, and corrosion resistance testing. The results reveal that the CoCrFeMnNi0.8V coating exhibits impressive corrosion resistance in chloride-rich environments. The composite coating leverages the synergy between the HEA’s inherent corrosion resistance and WC-Co’s wear resistance, striking a balance that suits demanding applications. With optimized processing conditions, the composite WC-Co-reinforced high entropy alloy coating could offer a significant advancement in protective coatings technology, especially for maritime and other corrosive settings. This work not only underscores the versatility of HEAs in surface engineering applications but also opens avenues for the development of new material mixtures.