In this article, we propose a novel wavelet convolution unit for the image-oriented neural network to integrate wavelet analysis with a vanilla convolution operator to extract deep abstract features more efficiently. On one hand, in order to acquire non-local receptive fields and avoid information loss, we define a new convolution operation by composing a traditional convolution function and approximate and detailed representations after single-scale wavelet decomposition of source images. On the other hand, multi-scale wavelet decomposition is introduced to obtain more comprehensive multi-scale feature information. Then, we fuse all these cross-scale features to improve the problem of inaccurate localization of singular points. Given the novel wavelet convolution unit, we further design a network based on it for fine-grained Alzheimer's disease classifications (i.e., Alzheimer's disease, Normal controls, early mild cognitive impairment, late mild cognitive impairment). Up to now, only a few methods have studied one or several fine-grained classifications, and even fewer methods can achieve both fine-grained and multi-class classifications. We adopt the novel network and diffuse tensor images to achieve fine-grained classifications, which achieved state-of-the-art accuracy for all eight kinds of fine-grained classifications, up to 97.30%, 95.78%, 95.00%, 94.00%, 97.89%, 95.71%, 95.07%, 93.79%. In order to build a reference standard for Alzheimer's disease classifications, we actually implemented all twelve coarse-grained and fine-grained classifications. The results show that the proposed method achieves solidly high accuracy for them. Its classification ability greatly exceeds any kind of existing Alzheimer's disease classification method.
Read full abstract