Abstract
Stereo image quality assessment is a crucial and challenging issue in 3D video communication. One of major difficulties is how to weigh binocular masking effect. In order to establish the assessment mode more in line with the human visual system, Watson model is adopted, which defines visibility threshold under no distortion composed of contrast sensitivity, masking effect and error in this study. As a result, we propose an Objective Stereo Image Quality Assessment method (OSIQA), organically combining a new Left-Right view Image Quality Assessment (LR-IQA) metric and Depth Perception Image Quality Assessment (DP-IQA) metric. The new LR-IQA metric is first given to calculate the changes of perception coefficients in each sub-band utilizing Watson model and human visual system after wavelet decomposition of left and right images in stereo image pair, respectively. Then, a concept of absolute difference map is defined to describe abstract differential value between the left and right view images and the DP-IQA metric is presented to measure structure distortion of the original and distorted abstract difference maps through luminance function, error sensitivity and contrast function. Finally, an OSIQA metric is generated by using multiplicative fitting of the LR-IQA and DP-IQA metrics based on weighting. Experimental results shows that the proposed method are highly correlated with human visual judgments (Mean Opinion Score) and the correlation coefficient and monotony are more than 0.92 under five types of distortions such as Gaussian blur, Gaussian noise, JP2K compression, JPEG compression and H.264 compression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Research Journal of Applied Sciences, Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.