Free-electron laser (FEL) facilities operating at MHz repetition rates can emit lasers with average powers reaching hundreds of watts. Partial absorption of this power induces thermal deformation of a few micrometres on the mirror surface. Such deformation degrades the characteristics of the reflected photon beam, leading to focal spot aberrations and wavefront distortions that fail to meet experimental requirements. A robust method is necessary to correct the mirror surface shape to meet the Maréchal criterion. This paper proposes a thermal deformation compensation scheme for offset mirrors operating at MHz repetition rates using a piezoelectric deformable mirror. The mirror is side-mounted with slots filled with an indium-gallium alloy, which house copper tubes for water cooling. Eighteen groups of piezo actuators are symmetrically attached to the top and bottom surfaces. The scheme incorporates finite-element analysis for simulation and post-processing verification, utilizing a differential evolution (DE) algorithm for global optimization. The DE algorithm effectively addresses the voltage constraints that the traditional singular value decomposition algorithm cannot handle. Under an X-ray wavelength of 1 nm, the peak-to-valley (PV) height error of the mirror was reduced from 1340.8 nm to 1.1 nm, and the root-mean-square (RMS) height error decreased from 859.1 nm to 0.18 nm. The slope error was corrected to 154 nrad PV and 24 nrad RMS. Significant results were also achieved at an X-ray wavelength of 3 nm. Wave-optics simulations verified the reliability of this approach, and effects on key mirror parameters and conditions were systematically analysed.
Read full abstract