A photonic front-end in the 5G wireless network based on wavelength-division multiplexing optical communication requires low-cost tunable transceivers. By exploiting polymer waveguide Bragg-grating technology, we propose a tunable transceiver consisting of an external cavity tunable laser and a tilted grating tunable filter. In particular, a double-reflection tunable filter provides narrower reflection bandwidth and suppresses undesired mode coupling, improving the side-mode suppression ratio (SMSR) and reducing adjacent-channel crosstalk. By introducing perfluorinated polymers with low birefringence, polarization independence, which is a prerequisite for wavelength filter elements, is secured, and 20 dB bandwidth of 0.69 nm, wavelength tunability over 40 nm, and SMSR of 42 dB are achieved.