A full C- and L-band covered second-order orbital-angular-momentum (OAM) mode generator has been proposed and experimentally demonstrated, which is realized by using a helical long-period fiber grating (HLPG) but inscribed in a thinned four-mode fiber. By optimizing the design of grating period and fiber diameter of the proposed HLPG, an ultra-broadband rejection filter with a depth of ∼23 dB, a bandwidth of ∼156 nm @-10 dB (ranging from 1522 nm to 1678 nm) and a bandwidth of ∼58 nm @-20 dB (ranging from 1574 nm to 1632 nm), has been successfully obtained as a typical sample. To the best of our knowledge, this is the first demonstration of such ultra-broadband second-order OAM mode generator by using only one fiber component, i.e., the thinned HLPG. In addition, the proposed generator is less polarization-dependent and less temperature-sensitive than those of the conventional HLPGs, which is believed to be considerably helpful to find potential applications of the device itself in wavelength division multiplexing (WDM) and OAM mode division multiplexing (MDM) optical fiber communication systems.