This paper presents a straightforward and easily scalable method for producing buckypapers. These thin films consist of single-walled carbon nanotubes (SWCNTs) dispersed on a PET substrate using an airbrushing technique, followed by solvent evaporation. Notably, this process requires minimal equipment complexity. The study investigates the electrical properties of buckypapers made from both purified and unpurified SWCNTs, as well as chemical vapor deposition graphene. Specifically, we focus on their electromagnetic interference (EMI) shielding effectiveness in theS-band of microwaves (2-4 GHz). To evaluate this, we installed buckypaper and graphene plates within a waveguide cross section. The results show that these buckypapers exhibit high overall shielding effectiveness. It is found that buckypapers based on purified carbon nanotubes have higher shielding parameters (due higher electrical conductivity measured by TRL method) than those based on unpurified CNTs. In summary, our approach offers a practical route for manufacturing effective EMI shielding materials, with potential applications in various technological domains.
Read full abstract