Herein, using 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl) tris(1,1'-biphenyl) trianiline (Ttba) as ligands, nitrogen-rich triazine unit-based covalent organic frameworks (COFs) with a suitable pore size, named TpTtba-COFs, were synthesized, and they were employed as adsorbents for the extraction and detection of three bisphenols (BPs)-BP A (BPA), BP B (BPB), and BP S (BPS)-in water. Using 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (Tapt) and 1,3,5-tris(4-aminophenyl)benzene (Tapb) ligands as substitutes for Ttba, nitrogen-rich triazine unit-based COFs with a smaller pore size and nitrogen-poor triazine unit-based COFs, named TpTapt-COFs and TpTapb-COFs, respectively, were also prepared for comparison. The adsorption performances of the three COF adsorbents with regard to the three BPs were tested. Owing to nitrogen-rich triazine units and a pore size suitable for BP adsorption, the maximum adsorption capacities of TpTtba-COFs for BPA, BPB, and BPS were 1.13, 1.33, and 1.37 times those of TpTapt-COFs and 2.10, 2.27, and 1.92 times those of TpTapb-COFs, respectively. The adsorption behavior and possible adsorption mechanism of the BPs on the TpTtba-COFs were also investigated. In addition, a TpTtba-COF-based dispersive solid-phase extraction-high-performance liquid chromatography/ultraviolet method exhibited an excellent linear range (1-800 ng/mL) and satisfactory limit of detection values (0.20-0.32 ng/mL) for the three BPs. The spiked recoveries of the three BPs in river and lake water ranged within 81.9%-101.9% and 82.8%-100.8%, respectively. Overall, this study offers valuable insights into the rational design of adsorbents for adsorption and sensitive detection of BPs in environmental water.
Read full abstract