During the early stage of the G satellite of the Fengyun-2 series (FY-2G), severe cold biases up to ~2.3 K occur in its measurements in the 12.0 μm (IR2) band, which demonstrate time- and scene-dependent characteristics. Similar cold biases in water vapor and carbon dioxide absorption bands of other satellites are considered to be caused by either ice contamination (physical method) or spectral response function (SRF) shift (empirical method). Simulations indicate that this cold bias of FY-2G indeed suffers from equivalent SRF shift as a whole towards the longer wavelength direction. To overcome it, a novel approach combining both physical and empirical methods is proposed. With the possible ice thicknesses tested before launch, the ice contamination effect is alleviated, while the shape of the SRF can be modified in a physical way. The remaining unknown factors for cold bias are removed by shifting the convolved SRF with an ice transmittance spectrum. Two parameters, i.e., the ice thickness (5 μm) and the shifted value (+0.15 μm), are estimated by inter-calibration with reference instruments, and the modification coefficient is also calculated (0.9885) for the onboard blackbody calibration. Meanwhile, the updated SRF was released online on 23 March 2016. For the period between July 2015 and December 2016, the monthly biases of the FY-2G IR2 band remain oscillating around zero, the majorities (~89%) of which are within ±1.0 K, while its mean monthly absolute bias is around 0.6 K. Nevertheless, the cold bias phenomenon of the IR2 band no longer exists. The combination method can be referred by other corrections for cold biases.
Read full abstract