Analysis of the water budget, along with hydrochemistry and stable isotopes in shallow groundwater were carried out in the Karamay Agricultural Development Area (KADA) in order to assess the impact of transfer of irrigation water from the IrtySh River, in particular in relation to the mechanisms of salinization and the nature of the water table regime. In terms of aquifer dynamics, the addition of the irrigation water without any groundwater abstraction has caused a sharp rise in the water table is and the development of serious soil salinity, together with an almost complete attenuation of inter-seasonal water table oscillations. The mean rise in the groundwater table from September 1997 to October 2009 was 6.9 m, representing an accumulated total water storage change of close to 150 million cubic meters. The analysis of aquifer water budget shows that infiltration of irrigation water occupied over 90% of the total recharge of the groundwater in the KADA. Sources of groundwater recharge and mechanisms of salinization in the KADA were also investigated using geochemical and isotopic techniques. The groundwater is characterized by Cl(SO 4 )–Na type, generally becoming more Na and Cl dominated with increasing salinity. The total dissolved solids (TDS) content of the groundwater ranges from 0.5 g/L to over 65 g/L, with greater TDS values in areas of low topographic relief and shallow water tables. Where the sediments are more permeable (e.g. due to the presence of palaeochannels), TDS values are generally lower and the seasonal water table fluctuations greater. The ratios of K/Cl, Ca/Cl, Na/Cl, and Mg/Cl decrease with increasing Cl − concentrations especially in the shallow groundwater from 10 to 15 m depth, indicating hydrogeochemical evolution via minor water-rock interaction (feldspar weathering) and significant evaporation. The stable isotopic compositions show a characteristic evaporation effect in the shallow groundwater and confirm that direct infiltration of precipitation is generally not a volumetrically important source of recharge to the shallow aquifer. Preferential recharge of river water after irrigation events and/or precipitation from rare heavy rain events is likely responsible for the depleted δ 2 H and δ 18 O values in some of the groundwater samples. The negative relationship between deuterium excess and δ 18 O values indicates that even in groundwater with relatively depleted δ 2 H and δ 18 O values, evaporation has occurred to a significant degree. Careful management of water quantity and quality and implementation of salinity management strategies are considered necessary in order to reduce the risk of further salt accumulation and damage to farming and local ecosystems.
Read full abstract