Abstract The comprehension of geothermal systems involves the efficient integration of geological, geophysical and geochemical tools that are crucial in unraveling the distinct features inherent in geothermal reservoirs. We provide a first approach to comprehending the geologically complex geothermal system in the Aachen area, which has been known for its natural thermal spring occurrences since Roman times. Through a comprehensive analysis involving geochemical interpretation of water samples, a review of 2D seismic profiles, stress analysis, and surface geology, a dynamic model has been built, which serves as a conceptual framework providing a clearer understanding of the system. The model characterizes a non-magmatic, detachment fault-controlled convective thermal system, wherein the reservoir exhibits mixed properties of the mainly Devonian carbonate rocks. NW–SE directed fault lines play a pivotal role in fluid transport, enabling the ascent of thermal waters without the need for additional energy. We additionally conducted magnetotelluric (MT) surveys and analyzed apparent resistivity and impedance values obtained through forward modeling, along with an assessment of noise levels. These findings contribute to evaluating the potential use of MT methods in further evaluating the study area and for geothermal energy exploration in general.
Read full abstract