Agricultural product demand driven by population and economic growth poses challenges to water, land, and energy utilization, and this increasing local demand is largely met through trade. However, the efficiency and nexus pattern of the water, land, and energy embodied in agricultural trade are not well understood. This study uses the multi-regional input–output framework to analyze agricultural water, land, and energy utilization efficiency of resource footprints per unit economic output as well as their transfer and nexus pattern in global agricultural trade for 1995–2019. The results show that many international agricultural trade paths are inefficient in the water, land, and energy resource use because the agricultural products in these paths are exported from relatively low- to high-efficiency economies/regions. However, these inefficient transfer paths show an increasing trend over the study period. Regarding the water-land-energy nexus, conflicts are prevalent in land-energy and water-energy couplings. Most trade paths are conducted to alleviate the pressure on a specific resource, inadvertently increasing the pressure on other resources. Although agricultural trade is important for meeting global food demands, it is not consistently beneficial to the local environment when considering agricultural resources use efficiency. This study is expected to improve our understanding of agricultural trade impacts to the agricultural resources and support the sustainable development of global agriculture.
Read full abstract