A reconnaissance survey was undertaken to evaluate the occurrence and risks of 27 pharmaceuticals and metabolites in the St. Lawrence watershed. Surface water samples were collected over a five-year period (2017–2021) along a 700-km reach of the St. Lawrence River as well as 55 tributary rivers (overall N = 406 samples). Additionally, depth water samples and sediments were collected near a major wastewater effluent. Caffeine, diclofenac, and venlafaxine were the most recurrent substances (detection rates >80 %), and extremely high levels were found near a municipal effluent (e.g., ibuprofen (860 ng/L), hydroxyibuprofen (1800 ng/L) and caffeine (7200 ng/L)). Geographical mapping and statistical analyses indicated that the St. Lawrence River water mass after the Montreal City effluent was significantly more contaminated than the other water masses, and that contamination could extend up to 70 km further downstream. This phenomenon was repeatedly observed over the five years of sampling, confirming that this is not a random trend. A slight increase in contamination was also observed near Quebec City, but concentrations rapidly declined in the estuarine transition zone. Tributaries with the highest pharmaceutical levels (ΣPharmas ∼400–900 ng/L) included the Mascouche, Saint-Régis, and Bertrand rivers, all located in the densely populated Greater Montreal area. When flowrate was factored in, the top five tributaries in terms of mass load (ΣPharmas ∼200–2000 kg/year) were the Des Prairies, Saint-François, Richelieu, Ottawa, and Yamaska rivers. All samples met the Canadian Water Quality Guideline for carbamazepine. Despite the large dilution effect of the St. Lawrence River, a risk quotient approach based on freshwater PNEC values suggested that four compounds (caffeine, carbamazepine, diclofenac, and ibuprofen) could present intermediate to high risks for aquatic organisms in terms of chronic exposure.