The permeance-selectivity trade-off and chlorine sensitivity of conventional polyamide membranes limit further efficiency improvement and cost reduction of nanofiltration (NF) processes for drinking water treatment. To overcome these challenges, this study proposed a reconstruction-esterification strategy for the development of advanced NF membranes. Results showed that the combination of Na3PO4 solution post-treatment and polyol molecule grafting generated a thinner active layer with smaller and more uniform pores. More importantly, the critical role of alkaline post-treatment in reducing the residual amine groups of polyamide layers was revealed, which enhanced the chlorine resistance of membranes jointly with the effect of surface esterification. In comparison with the surface water purification performance of several commercial NF membranes, the obtained esterified membrane showed excellent selectivity between natural organic matter and salts, along with a reasonable water permeance. Moreover, the higher and stable removal capacity of the esterified membrane for disinfection byproducts and their precursors demonstrated its application advantage in the potential chlorination-NF-coupled process. The developed chlorine-resistant membrane and initially attempted NF filtration of chlorinated water in this study can help promote process innovation and highlight more benefits of NF technology for drinking water treatment.
Read full abstract