The characteristics of water diffusional permeability (P) of human red blood cells were studied on isolated erythrocytes and ghosts by a doping nuclear magnetic resonance technique. In contrast to all previous investigations, systematic measurements were performed on blood samples obtained from a large group of donors. The mean values of P ranged from 2.2 X 10(-3) cm.s-1 at 5 degrees C to 8.1 X 10(-3) cm.s-1 at 42 degrees C. The reasons for some of the discrepancies in the permeability coefficients reported by various authors were found. In order to estimate the basal permeability, the maximal inhibition of water diffusion was induced by exposure of red blood cells to p-chloromercuribenzenesulfonate (PCMBS) under various conditions (concentration, duration, temperature). The lowest values of P were around 1.3 X 10(-3) cm.s-1 at 20 degrees C, 1.6 X 10(-3) cm.s-1 at 25 degrees C, 1.9 X 10(-3) cm.s-1 at 30 degrees C and 3.2 X 10(-3) cm.s-1 at 37 degrees C. The results reported here represent the largest series of determinations of water diffusional permeability of human red blood cells (without or with exposure to mercurials) available in the literature, and consequently the best estimates of the characteristics of this transport process. The values of P can be taken as references for the studies of water permeability in various cells or in pathological conditions.
Read full abstract