Drainage is an important aspect of effective water management in row-crop agriculture. Drainage systems can be broadly categorized as either subsurface or surface drainage. A significant amount of design goes into subsurface drainage installations, such as tile networks, and permanent surface drainage installations, such as waterways and berms. However, many farmers also implement temporary surface drainage installations to drain localized areas within their fields each year. This practice involves creating shallow water paths, typically using spinner ditchers, and it is especially commonplace in areas with poor soil permeability. However, this practice is traditionally performed using only observations by farmers and without any data-based workflows. The objective of this study was to analyze the potential yield benefits from a more data-informed approach to surface drainage on a production row-crop farm by exploring corn and soybean yield data from 2008–2021 from two fields where a data-informed approach to surface drainage was implemented. Field topography and drainage information were combined with yield maps from prior years with traditional ad hoc drainage and the years following the incorporation of the data-informed approach to better understand the impact of the workflow. Geospatial distribution of the average normalized crop yields and elevation maps for the fields were analyzed to isolate the yield impacts of the areas affected by the data-informed on-farm surface drainage artifacts. In the years after implementation of the data-informed surface drainage approach, Field 1 and Field 2 showed respective increases of 18.3% and 13.9% in average corn yields. Further analysis isolating three areas affected by the surface drainage using topography and drainage layout showed that all three isolated areas improved more than the field averages, ranging from 15.9–26.5% for Field 1 and 21.4–40.2% for Field 2. Similarly, soybean yields were also higher in the isolated affected areas after the data-informed drainage ditch construction. The findings highlight the effectiveness of data-informed on-farm surface drainage, a relatively straightforward approach that proved beneficial for both soybean and corn production.
Read full abstract