The intensive agricultural use of soils in the Brittany region (western France) has increased the need for a better understanding of soil water dynamics. The aim of the present study is to compare quantitatively the differences produced by two agricultural practices on soil hydraulic properties (water retention curve and hydraulic conductivity) as well as the infiltration and drainage fluxes in the soils. This study was carried out on two experimental plots managed in the same way for 22 years. The two practices were continuous maize fertilized with mineral fertilizer, denoted as MX, and pasture within a ray-grass/maize rotation (3/1 year) with organic fertilization (pig slurry), denoted as PR. The study consisted of measuring soil physical properties in the laboratory and in the field, and estimating water infiltration in the soil of the two plots by recording water pressure heads after simulation of 2-h artificial rainfall with an intensity of 17 mm/h. We applied the van Genuchten model to describe the water retention and hydraulic conductivity curves ( θ( h) and K( h)) for each soil horizon of the two plots. Hydrus-2D and ID softwares were used to construct a numerical model of water movement in the two soils. This model was used to quantify the infiltration rate, deep drainage and actual evaporation fluxes during the artificial rainfall experiment. The vertical influence of agricultural practices in both plots appears to be limited to the uppermost 35 cm. Deeper in the B horizon, there are only very slight differences in the hydraulic properties between the two plots. In the top soil horizons (H1–H5 and H6), the two soil properties mostly affected by practices are the hydraulic conductivity and the α parameter of the van Genuchten model. At the lowest pressure head studied here (−1.5 kPa), hydraulic conductivity in a given horizon differs by more than one order of magnitude between the two plots. The model reproduces quite satisfactorily the observed pressure heads in plot PR at all depths, in the rainy period as well as in the water redistribution period (efficiency >0.77). Results are less good for the MX plot, with efficiency ranging from 0.49 to 0.84 depending on the horizon. The different sources of simulation errors are identified and discussed. For the MX plot, the soil water movement model succeeds in reproducing the infiltration excess runoff observed in the field, allowing us to calculate that it accounts for 9% of the applied rainfall. No surface runoff or ponding appears in the PR plot during the artificial rainfall experiment. In the PR plot, the simulated deep drainage flux increases more rapidly than in the MX plot. The lower hydraulic conductivity in the top soil horizon of the MX plot compared with the PR plot appears to reduce the infiltration rate as well as the deep drainage flux. It also decreases the upward flow of water to the soil surface when the water content in the top soil layer is depleted by evaporation flux. The model simulation could be improved by a more precise representation of the soil structure, particularly the location, size and frequency of clods as well as the variability of hydraulic properties. However, we need to strike a balance between improving the quality of the simulation even further and the practical constraints and efforts involved in measuring the soil hydraulic properties.