Lake Trafford, a 600-ha subtropical lake in southwestern Florida, has suffered from over 50 years of cultural eutrophication, resulting in the invasion of Hydrilla verticillata and organic sediment accumulation due to herbicide treatments. This study aimed to assess the effects of dredging on nutrient dynamics. A pre-dredging nutrient budget, developed using land use models and climatic data, estimated nutrient loads of 190 kg d−1 for total nitrogen (TN) and 18.6 kg d−1 for total phosphorus (TP), with total maximum daily loads (TMDLs) of 70.4 kg d−1 for TN and 4.15 kg d−1 for TP. Post-dredging analysis, using detailed spatiotemporal data, showed higher nutrient loads of 274.3 kg d−1 for TN and 24.2 kg d−1 for TP. While dredging reduced legacy nutrient accumulation, it led to increased nutrient influx from groundwater, caused by the exposure of organic sediment, as evidenced by increased lake water electrical conductivity. These findings demonstrate the importance of conducting thorough pre-dredging assessments to mitigate unintended consequences, offering practical insights for managing nutrient loads and improving restoration strategies in eutrophic lakes.
Read full abstract