This article provides a comprehensive overview of ice-jam flood forecasting methodologies applicable to rivers during freezing. It emphasizes the importance of understanding river ice processes and fluvial geomorphology for developing a freeze-up ice-jam flood forecasting system. The article showcases a stochastic modelling approach, which involves simulating a deterministic river ice model multiple times with varying parameters and boundary conditions. This approach has been applied to the Exploits River at Badger in Newfoundland, Canada, a river that has experienced several freeze-up ice-jam floods. The forecasting involves two approaches: predicting the extent of the ice cover during river freezing and using an ensemble method to determine backwater flood level elevations. Other examples of current ice-jam flood forecasting systems for the Kokemäenjoki River (Pori, Finland), Saint John River (Edmundston, NB, Canada), and Churchill River (Mud Lake, NL, Canada) that are operational are also presented. The text provides a detailed explanation of the processes involved in river freeze-up and ice-jam formation, as well as the methodologies used for freeze-up ice-jam flood forecasting. Ice-jam flood forecasting systems used for freeze-up were compared to those employed for spring breakup. Spring breakup and freeze-up ice-jam flood forecasting systems differ in their driving factors and methodologies. Spring breakup, driven by snowmelt runoff, typically relies on deterministic and probabilistic approaches to predict peak flows. Freeze-up, driven by cold temperatures, focuses on the complex interactions between atmospheric conditions, river flow, and ice dynamics. Both systems require air temperature forecasts, but snowpack data are more crucial for spring breakup forecasting. To account for uncertainty, both approaches may employ ensemble forecasting techniques, generating multiple forecasts using slightly different initial conditions or model parameters. The objective of this review is to provide an overview of the current state-of-the-art in ice-jam flood forecasting systems and to identify gaps and areas for improvement in existing ice-jam flood forecasting approaches, with a focus on enhancing their accuracy, reliability, and decision-making potential. In conclusion, an effective freeze-up ice-jam flood forecasting system requires real-time data collection and analysis, historical data analysis, ice jam modeling, user interface design, alert systems, and integration with other relevant systems. This combination allows operators to better understand ice jam behavior and make informed decisions about potential risks or mitigation measures to protect people and property along rivers. The key findings of this review are as follows: (i) Ice-jam flood forecasting systems are often based on simple, empirical models that rely heavily on historical data and limited real-time monitoring information. (ii) There is a need for more sophisticated modeling techniques that can better capture the complex interactions between ice cover, water levels, and channel geometry. (iii) Combining data from multiple sources such as satellite imagery, ground-based sensors, numerical models, and machine learning algorithms can significantly improve the accuracy and reliability of ice-jam flood forecasts. (iv) Effective decision-support tools are crucial for integrating ice-jam flood forecasts into emergency response and mitigation strategies.