Steam reforming is an important industrial process for hydrogen production. Acetone, the by-product of phenol production from cumene peroxidation, is a useful source of hydrogen due to its availability and low value compared to hydrogen fuel. This study aimed to utilize the Gibbs free energy minimization method using the Soave–Redlich–Kwong (SRK) equation of state (EOS) to conduct a thermodynamic analysis of the steam reforming process for pure component acetone. The steam reforming process is temperature dependent, with increasing temperatures leading to higher hydrogen production. Competing reactions, particularly the exothermic reverse water–gas shift, impact hydrogen yields beyond 650 °C. The study identified 600 °C as the optimum temperature to strike a balance between maximizing hydrogen production and minimizing the reverse water–gas shift’s impact. The optimal hydrogen yield (70 mol%) was achieved at a steam-to-oil ratio (STOR) of 12. High STOR values shift the equilibrium of the water–gas shift reaction towards hydrogen production due to increased steam, effectively consuming acetone and favoring the desired product. Atmospheric pressure is optimum for hydrogen production because the equilibrium of gas phase reactions shifts in favor of the lighter components at lower pressures.
Read full abstract