BackgroundSalinity is a major threat to rice growth and productivity. Utilizing wild rice-derived genes and biostimulants with high growth promoting- and stress-alleviating potential can significantly improve salinity tolerance in cultivated rice. Herein, we investigated the vegetative growth and physiological responses of Giza 177 (Oryza sativa, salinity sensitive, high-yielding cultivar) and a promising introgression salt tolerant line (sativa/glaberrima; SG 65) from a population of Giza 177 × African rice (Oryza glaberrima) under low (2.75 mS/cm) and high (5.5 mS/cm) salinity stress. The possible ameliorative effects of priming rice seeds in moringa leaf extract (MLE) on these responses were also tested.ResultsThe two salinity levels induced differential reduction in plant growth in both cultivars. In the MLE-unprimed plants, salinity induced 34–54% and 30–45% reductions in biomass accumulation in Giza 177 and SG 65, respectively. These responses were associated with significant differential reductions in relative water content, chlorophylls, carotenoids, and gas exchange parameters (transpiration rate, net photosynthetic rate, stomatal conductance, and intercellular CO2 concentration), ascorbic acid, and total protein. Conversely, salinity induced the accumulation of H2O2, malondialdehyde, proline, carbohydrate fractions, and membrane injury. MLE treatment mitigated the above salinity-induced adverse effects in both cultivars via reducing the salt-induced oxidative stress through the induction of non-enzymic (total phenols, and flavonoids) and enzymic antioxidants including ascorbate peroxidase, catalase, peroxidase, and polyphenol oxidase in both cultivars. SG 65 plants exhibited consistently higher salt tolerance and responsiveness to MLE than Giza 177.ConclusionsThis study reports significant differences in an array of critical physiological and biochemical indices that underpin the divergent responses between the two salinized cultivars. It demonstrates the potential of African rice-derived genomic fragments and MLE priming in mitigating salinity stress, highlighting their use as a sustainable strategy for increasing rice production in salt-affected soils.
Read full abstract