This paper investigates the effect of the immersion ratio parameter on the hydrodynamic performance of three surface-piercing propellers with diameters of 0.125, 0.132 and 0.140m at different advancing speeds. Experimental tests have been carried out in the free surface water tunnel of the Babol Noshirvani University of Technology. The results showed that the maximum thrust coefficient of three propellers occurs in the velocity range of 3-3.5 m/s. This interval represents the transition area of the three propellers. Also, the effect of the blockage ratio on the hydrodynamic coefficients of three propellers relative to the advance coefficient has been studied. By increasing the immersion depth raises the propeller's wet surface and increases the thrust and torque hydrodynamic coefficients. However, growing the propeller's diameter to 0.140m causes the effect of the blockage ratio parameter by increasing the immersion and the propeller's torque experiences a decreasing trend. Therefore, maximum propeller efficiency value with diameter 0.140m in immersion ratio 0.60 and 0.70, incresing 38% and 44%, respectively; relative to other proepllers. Also, the curve of the efficiency gradient of three propellers in the optimum immersion ratio of 0.40 compared to the advancing coefficient shows that the maximum efficiency gradient occurs in the range of 0.7 to 0.9.