Air pockets can become trapped at high points in pipelines with irregular profiles, particularly during service interruptions. The resulting issues, primarily caused by peak pressures generated during pipeline filling, are a well-documented topic in the literature. However, it is surprising that this subject has not received comprehensive attention. Using a model developed by the authors, this paper identifies the key parameters that define the phenomenon, presenting equations in a dimensionless format. The main advantage of this study lies in the ability to easily compute pressure surges without the need to solve a complex system of differential and algebraic equations. Numerous cases of filling operations were analysed to obtain dimensionless charts that can be used by water utilities to compute pressure surges during filling operations. Additionally, it provides charts that facilitate the rapid and reasonably accurate estimation of peak pressures. Depending on their transient characteristics, pressure peaks are either slow or fast, with separate charts provided for each type. A practical application involving a water pipeline with an irregular profile demonstrates the model’s effectiveness, showing strong agreement between calculated and chart-predicted (proposed methodology) values. This research provides water utilities with the ability to select the appropriate pipe’s resistance class required for water distribution systems by calculating the pressure peak value that may occur during filling procedures.
Read full abstract