A new humic acid-based nanomagnetic copper(II) composite was prepared and used as an eco-friendly recoverable catalyst for synthesizing 1,4-disubstituted 1,2,3-triazoles. The synthesis was done via the three-component click reaction of alkyl halide, sodium azide, and terminal alkyne with good to excellent yield. A simple magnetic copper acetate composite, Fe3O4@HA-Cu(OAc)2, was prepared using humic acid and characterized by SEM, TEM, XRD, EDX, EDS-mapping, VSM, TGA, AAS, and FT-IR. The catalyst showed high catalytic potential in a one-pot three-component click reaction in the synthesis of 1,2,3-triazoles. The nanomagnetic Fe3O4@HA-Cu(OAc)2 catalyst demonstrated high efficiency, stability, compatibility with oxygen/water and recyclable copper(II), with cost-effectiveness. The catalyst was easily recovered with an external magnetic field, and therefore, time and energy were saved as no filtration or decantation technique was needed. Due to the high dispersibility in water, nanomagnetic Fe3O4@HA-Cu(OAc)2 was utilized as a highly efficient catalyst for the click synthesis of triazoles.
Read full abstract