It is demonstrated that acoustic transmission through a phononic crystal with anisotropic solid scatterers becomes non-reciprocal if the background fluid is viscous. In an ideal (inviscid) fluid, the transmission along the direction of broken P symmetry is asymmetric. This asymmetry is compatible with reciprocity since time-reversal symmetry (T symmetry) holds. Viscous losses break T symmetry, adding a non-reciprocal contribution to the transmission coefficient. The non-reciprocal transmission spectra for a phononic crystal of metallic circular cylinders in water are experimentally obtained and analysed. The surfaces of the cylinders were specially processed in order to weakly break P symmetry and increase viscous losses through manipulation of surface features. Subsequently, the non-reciprocal part of transmission is separated from its asymmetric reciprocal part in numerically simulated transmission spectra. The level of non-reciprocity is in agreement with the measure of broken P symmetry. The reported study contradicts commonly accepted opinion that linear dissipation cannot be a reason leading to non-reciprocity. It also opens a way for engineering passive acoustic diodes exploring the natural viscosity of any fluid as a factor leading to non-reciprocity.