Water contamination by highly toxic substances has generated serious ecological disturbances and health problems for humans. Hence, decontamination of toxic pollutants using advanced, inexpensive, and eco-friendly approaches is the current demand. Heterogeneous catalyst-based catalytic reduction processes have offered the opportunity to transform hazardous water pollutants into non-hazardous products via sustainable, eco-friendly, and efficient routes and might be a competitive substitute for existing traditional water purification techniques. However, the key challenges linked with pure heterogeneous catalysts include agglomeration and poor dispersion, stability, recovery, and reusability, which result in poor activity and efficiency. Thus, it is essential to produce multipurpose polymer-based composite catalysts using conducting polymers, which are exceptionally good supportive and matrix materials. The blending of metal-based nanomaterials with polyaniline conducting polymers produces highly stable and efficient heterogeneous nanocomposite catalysts with amazing catalytic activity against a wide range of water pollutants. The heterogeneous catalytic reductive degradation of immensely toxic pollutant water has gained substantial curiosity because of its excellent physicochemical and surface characteristics, porous structure, recoverability, and recyclability. Therefore, this review presents the latest efforts to generate various polyaniline-based nanocomposite catalysts using a polyaniline matrix and various nanofiller materials and their potential applications in heterogeneous catalytic reduction degradation of water pollutants.
Read full abstract