Limited human activities in catchments make remote alpine lakes valuable sites for studying the evolution of lake environments in response to climate change and atmospheric deposition; however, this issue remains rarely studied owing to the scarcity of monitoring data. In this study, water quality evolution in Lake Jiren, a remote alpine lake on the southeastern margin of the Tibetan Plateau, over the past two centuries was reconstructed through geochemical analyses of aliphatic hydrocarbons, major and trace elements, and organic matter (OM) pyrolysis products in a dated sediment core, and the associated drivers were identified by temporally comparing the geochemical results with document records. All geochemical data demonstrated that the lake water remained relatively pure until 1947, after which the n-alkane and αβ-hopane proxies indicated eutrophication and petroleum contamination. The OM pyrolysis proxy hydrocarbon index indicated more eutrophic conditions after 1957. Concurrently, hypolimnetic deoxygenation increased, as indicated by redox-sensitive proxies, such as the enrichment factors (EFs) of molybdenum (Mo). These proxies recorded further intensification of deoxygenation after 1976. The EFs for other trace elements indicated cadmium contamination after 1967. The greater anthropogenic emissions of reactive nitrogen, petroleum products, and heavy metals in East and South Asia since approximately 1950 and the subsequent atmospheric transport of these materials to the lake might be the basic driver of water quality deterioration. Eutrophication induced by nitrogen deposition was responsible for increased hypolimnetic deoxygenation by enhancing phytoplankton productivity and OM input. The further intensification of deoxygenation was attributed to climate warming since the 1970s, as prolonged water column stratification under this condition decreased oxygen input from the epilimnion to the lake bottom. These findings may be beneficial for understanding the natural and anthropogenic effects on the water quality of alpine lakes and help in the environmental management of Lake Jiren and other alpine lakes.