Nuclear power plants have the lowest life-cycle greenhouse gas emissions intensity and produce more electricity with less land use compared to any other low-carbon-emission-based energy source. There is growing global interest in Generation IV reactors and, at the same time, there is great interest in using small modular reactors. However, the development of new reactors introduces new engineering and chemical challenges critical to advancing nuclear energy safety, efficiency, and sustainability. For Generation III+ reactors, water chemistry control is essential to mitigate corrosion processes and manage radiolysis in the reactor’s primary circuit. Generation IV reactors, such as molten salt reactors (MSRs), face the challenge of handling and processing chemically aggressive coolants. Small modular reactor (SMR) technologies will have to address several drawbacks before the technology can reach technology readiness level 9 (TRL9). Issues related to the management of irradiated graphite from high-temperature reactors (HTR) must be addressed. Additionally, spent fuel processing, along with the disposal and storage of radioactive waste, should be integral to the development of new reactors. This paper presents the key chemical and engineering aspects related to the development of next-generation nuclear reactors and SMRs along with the challenges associated with them.
Read full abstract