TEMPO-oxidized cellulose nanofibers (TOCNs) from waste of oil palm empty fruit bunches (OPEFB) were integrated into an alginate matrix to increase the capacity of the alginate membrane for water-ethanol separation. The membrane composed of the alginate matrix and TOCNs was characterized in terms of its morphological, physical-mechanical properties and performance in the separation of water-ethanol suspensions, with ethanol concentrations in the suspension of 10% and 20%. Other alginate membranes integrated with commercial TOCNs from wood were also prepared and tested for comparison. The results showed that the addition of TOCNs (made from wood and OPEFB waste) to the alginate matrix improved the water adsorption capacity of the membrane. The water adsorption capacity of the alginate membranes with wood-derived TOCNs, OPEFB-derived TOCNs and alginate only was 78%, 87% and 66%, respectively. The flux capacity of the alginate membrane, integrated with OPEFB-derived TOCNs, was higher than that of the alginate membrane alone, but lower than that of the alginate membrane integrated with wood-derived TOCNs. This study showed the utilization of nanocellulose from palm oil biomass waste can be considered to improve the physical-mechanical properties of alginate-based membranes used for various applications, including filtration.