The global demand for sustainable building materials has fuelled research into composite panels from wood waste. Despite their potential, the widespread adoption of this practice is hindered by the absence of quality standards, inconsistent material properties, and uncertainties about durability and strength. This paper critically reviews existing standards, manufacturing processes, and the suitability of panels from wood waste. A systematic review is conducted to identify the influencing processes and parameters affecting panel performance, from waste collection to the finishing stages. The findings indicate that incorporating 10–30% of wood waste can enhance the mechanical and physical properties, with particularly improved hygroscopic properties and greater dimensional stability. By establishing comprehensive standards and optimizing manufacturing processes, wood waste-based panels can emerge as a viable and eco-friendly alternative. Furthermore, the potential for repeated recycling in a closed-loop process offers promising environmental benefits, though it necessitates balancing resource conservation with product quality. By addressing these challenges, wood waste-based panels can significantly contribute to environmental conservation and resource management.
Read full abstract